The 20-Membered Ring Binuclear Complex Bis $[\mu-1,7-h e p t a n e d i y l b i s(d i-t e r t-~$ butylphosphine)]-bis(dichloropalladium)

By W. S. McDonald
Department of Inorganic and Structural Chemistry, The University, Leeds LS 2 9JT, England

(Received 12 June 1979; accepted 30 August 1979)

Abstract

C}_{46} \mathrm{H}_{100} \mathrm{Cl}_{4} \mathrm{P}_{4} \mathrm{Pd}_{2},\left[\mathrm{Pd}_{2}\left(\mathrm{C}_{23} \mathrm{H}_{50} \mathrm{P}_{2}\right)_{2} \mathrm{Cl}_{4}\right], M_{r}=\) 1131.8, monoclinic, $P 2_{1} / n, a=23.009$ (6), $b=$ 15.454 (6), $c=17.944$ (5) $\AA, \beta=108.98$ (3) ${ }^{\circ}, Z=4$, $D_{x}=1.246 \mathrm{Mg} \mathrm{m}^{-3}, V=6033$ (3) $\AA^{3}, \mu(\mathrm{Mo} \mathrm{Ka})=$ $0.898 \mathrm{~mm}^{-1}$. The compound contains a 20 -membered ring of rectangular shape, with the bulky tert- $\mathrm{Bu}_{2} \mathrm{P}$ groups in the four corner positions and the trans $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ linkages and extended $-\left(\mathrm{CH}_{2}\right)_{7}$ - chains forming the sides; the macrocycle has an elongated boat ('barge') conformation.

Introduction. Measurements were made on a Syntex $P 2_{1}$ diffractometer using monochromatized Mo $K \alpha$ radiation ($\lambda=0.71069 \AA$). Cell dimensions and their e.s.d.'s were obtained by least-squares treatment of the setting angles for 15 reflections with $35^{\circ}<2 \theta<40^{\circ}$. Of the 5657 independent F_{o} 's in the range $5^{\circ}<2 \theta<$ 40° the 3720 having $I>3 \sigma(I)$ were used in the structure analysis. Lorentz, polarization, and absorption (A^{*} $=1 \cdot 10-1 \cdot 30)$ corrections were applied and the structure was solved from Patterson and electron density syntheses. Least-squares refinement with isotropic temperature factors converged at $R=0.087$, and inclusion of anisotropic temperature factors for Pd, P, and Cl led to a final R of 0.064 with $R^{\prime}=0.085 ; \mathrm{H}$ atoms were not included. Modified variances $\sigma^{2}(I)=$

Fig. 1. ORTEP drawing (Johnson, 1965) of the molecular structure showing the atom numbering.
$\sigma_{c}^{2}(I)+(Q I)^{2}$ were used, where σ_{c}^{2} is the variance calculated from counting statistics, and least-squares weights were calculated from the corresponding expression $w^{-1}=\sigma^{2}(F)+\frac{1}{4}(Q F)^{2}$; a value of $Q=0.05$ was found to give a fairly uniform distribution of $w \Delta^{2}$ as a function of F_{o}. The final value of $\left[\sum w \Delta^{2} /\right.$ $(n-m)]^{1 / 2}$ was $2 \cdot 15$, a reasonable value for a model which does not include H atoms or anisotropic vibrations for C. Atomic scattering factors were calculated from the analytical approximation and coefficients given in International Tables for X-ray Crystallography (1974).
The atomic coordinates and their e.s.d.'s (by inversion of the block-diagonal least-squares matrix) are given in Table 1.*

Discussion. Shaw and co-workers have shown (Al Salem, Empsall, Markham, Shaw \& Weeks, 1979) that the bulky tert-butyl substituents in diphosphines of the type $\mathrm{Bu}_{2}^{t} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PBu}_{2}^{t}$, with $n=5-12$, promote cyclization and form macrocyclic binuclear complexes of the type $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}\left\{\mathrm{Bu}_{2}^{t} \mathrm{P}^{2}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PBu}_{2}^{t}\right\}_{2}\right]$. The present compound is one of this series and the analysis was carried out to confirm the structure and to establish details of the conformation of the ring.
As may be seen in Fig. 1, the ring is of rectangular shape, with sides formed by the extended - $\left(\mathrm{CH}_{2}\right)_{7}$ chains and by the trans $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ linkages, while the tert $-\mathrm{Bu}_{2} \mathrm{P}$ groups form the four corners. This latter feature is indicative of the role of the tert-Bu substituents in promoting cyclization, since the 'rightangle bend' at P is the preferred conformation. We have found that in the complexes $\left[\mathrm{PdCl}_{2}\left(\mathrm{PBu}_{2}^{t} \mathrm{Pr}^{n}\right)_{2}\right]$ and $\left[\mathrm{PdCl}_{2}\left(\mathrm{PBu}_{2}^{\prime} \mathrm{Bu}^{n}\right)_{2}\right]$ the same conformation at P occurs although the structures are acyclic; the angle between the $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ and n-alkyl chain directions is $c a 90^{\circ}(\mathrm{W}$. S. McDonald, unpublished results). There is a slight

[^0]Table 1. Atom coordinates with e.s.d.'s and $U_{\text {eq }}$ values
for Pd, P and Cl , and $U_{\text {iso }}$ for C
E.s.d.'s for the original $U_{i j}$ values for Pd, P and Cl are as follows: $\mathrm{Pd} 0.0007, \mathrm{P} 0.003, \mathrm{Cl} 0.003 \AA^{2}$.

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34735 (25 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

